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Abstract
We study the degenerate Garnier system which generalizes the fifth Painlevé
equation PV. We present two classes of particular solutions, classical
transcendental and algebraic ones. Their coalescence structure is also
investigated.
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Mathematics Subject Classification: 33E12, 34M55, 33C65

1. Introduction

The Painlevé equations PJ (J = I, . . . , VI) are derived from the theory of monodromy
preserving deformations of linear differential equations of the form

(LJ )
d2y

dx2
+ p1(x, t)

dy

dx
+ p2(x, t)y = 0,

with singularities corresponding to a partition of four as follows (see e.g. [2]):

LVI (1, 1, 1, 1)

LV (1, 1, 2)

LIV (1, 3)

LIII (2, 2)

LII (4)

In this table, a partition (r1, . . . , rk) indicates that LJ has k singularities of Poincaré ranks
r1 − 1, . . . , rk − 1, respectively. Thus we regard each of PJ (J = II, . . . , VI) as an equation
corresponding to a partition of four. We note that the length k of the partition equals the
number of constant parameters contained in PJ . The first Painlevé equation PI has no constant
parameter and does not correspond to any partition.
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The Garnier system (in N variables) generalizes the sixth Painlevé equation PVI and
governs the monodromy preserving deformation of linear differential equation with N + 3
regular singularities [2]. We also regard the Garnier system as corresponds to the partition
(1, . . . , 1) of N + 3.

Each of the Painlevé equations PJ (J = I, . . . , V) can be reduced from the sixth one
through a certain limiting procedure, in parallel with the confluence of singularities of the
linear differential equation LJ [14]. Similarly, the degenerations of the Garnier system
are considered [5–7, 10, 16]. Each of them is associated with a partition. We denote by
G(r1, . . . , rk;N) the degenerate Garnier system in N variables corresponding to a partition
(r1, . . . , rk) of N + 3.

It is well known that each of PJ (J = II, . . . , VI) admits two classes of classical solutions,
hypergeometric and algebraic (or rational) ones. The coalescence structure of these solutions
is investigated in detail [11, 12], as well as the degeneration scheme of the Painlevé equations.
Also, the Garnier system G(1, . . . , 1;N) has such classes of classical solutions [8, 18–20].
The aim of this paper is to study particular solutions of the degenerate Garnier system
G(1, . . . , 1, 2;N) which generalizes the fifth Painlevé equation PV and their coalescence
structure by means of τ -functions.

We have in [17] a family of τ -functions for G(1, . . . , 1;N) arranged on a lattice. This
family is determined by a certain completely integrable Pfaffian system. In section 2, we
investigate the degeneration of the Pfaffian system together with the degenerate limiting
procedure from G(1, . . . , 1;N) to G(1, . . . , 1, 2;N); hence we obtain a family of τ -functions
on a lattice for G(1, . . . , 1, 2;N). We have in particular (see theorems 3.2, 3.3 and 4.2) the
following.

Theorem 1.1. The system G(1, . . . , 1, 2;N) admits three types of solutions:

(i) classical transcendental ones expressed by the hypergeometric series �D;

(ii) rational ones in terms of the Schur polynomials;

(iii) algebraic ones in terms of the universal characters.

2. Degenerate Garnier system

In this section, we formulate the degenerate Garnier system G(1, . . . , 1, 2;N), then introduce
a family of τ -functions for the system.

2.1. Hamiltonian system and Schlesinger system

Let {, } be the Poisson bracket defined by

{f, g} =
N∑

j=1

(
∂f

∂pj

∂g

∂qj

− ∂g

∂pj

∂f

∂qj

)
. (2.1)

Consider the following completely integrable Hamiltonian system:

dqj =
N∑

i=1

{Ki, qj } dsi, dpj =
N∑

i=1

{Ki, pj } dsi (j = 1, . . . , N), (2.2)
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with polynomial Hamiltonians Ki (i = 1, . . . , N):

s2
1K1 = q1


ρ +

N∑
j=1

qjpj





ρ + θN+3 + 1 +

N∑
j=1

qjpj




+
N∑

j=2

s1p1qj −
N∑

j=2

sjq1(qjpj − θj )pj −
N∑

j=2

(sj − 1)qjpj

− s1q1p1(q1p1 − θN+2) + (q1 − s1)p1,

si(si − 1)Ki = qi


ρ +

N∑
j=1

qjpj





ρ + θN+3 + 1 +

N∑
j=1

qjpj




−
N∑

j=2,j �=i

Rij qipi(qjpj − θj ) −
N∑

j=2,j �=i

Rjiqi(qjpj − θj )pj

−
N∑

j=2,j �=i

Sijpi(qipi − θi)qj −
N∑

j=2,j �=i

Rij (qipi − θi)qjpj

+ {sipi − (si + 1)qipi} (qipi − θi) + (θN+2si + θN+1 − 1)qipi

+
si(si − 1)

s1
{qipi + pi(qipi − θi)q1} − (si − 1)qip1

− si(2qipi − θi)q1p1 (i = 2, . . . , N), (2.3)

where
N+3∑
j=2

θj + 2ρ = 0, (2.4)

and

Rij = si(sj − 1)

sj − si

, Sij = si(si − 1)

si − sj

. (2.5)

We call (2.2) the degenerate Garnier system and denote it by G(1, . . . , 1, 2;N). This system
is regarded as a generalization of the fifth Painlevé equation PV [15]. For N = 1, this is
exactly the Hamiltonian system of PV . We note that G(1, . . . , 1, 2;N) is equivalent to the
system given by Kimura [7] via a certain canonical transformation.

Let Aj (j = 1, . . . , N + 2) be matrices of the dependent variables defined by

Aj =
(

aj bj

cj dj

)
. (2.6)

Consider the following system of differential equations:

dA1 =
N+1∑
i=2

[Ai,A1] d log ti + (A1 + [AN+2, A1]) d log t1,

dAj =
N+2∑

i=2,i �=j

[Ai,Aj ] d log(tj − ti) +
[A1, Aj ]

tj
d log

tj

t1
(j = 2, . . . , N + 1), (2.7)

dAN+2 =
N+1∑
i=2

(
[Ai,A1]

ti
d log

ti

t1
+ [Ai,AN+2] d log ti

)
,
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where tN+1 = 1 and tN+2 = 0. Here we assume

(i) tr A1 = t1, tr Aj = θj /∈ Z (j = 2, . . . , N + 2);
(ii) det Aj = 0 (j = 1, . . . , N + 1), tr A1AN+2 = t1θN+2;

(iii) The matrices Aj satisfy

A∞ := −
N+2∑
j=2

Aj =
(

ρ 0
0 ρ + θN+3

)
, θN+3 /∈ Z. (2.8)

We call (2.7) the degenerate Schlesinger system denoted by S(1, . . . , 1, 2;N).
The system S(1, . . . , 1, 2;N) is in fact equivalent to G(1, . . . , 1, 2;N) via

s1 = − 1

t1
, si = ti − 1

ti
,

q1 = − b1

t1b∞
, qi = (ti − 1)

bi

b∞
,

(2.9)
q1p1 = a1 + aN+2 − b1

aN+1

bN+1
− bN+2

a1

b1
,

qipi = ai − tibi

aN+1

bN+1
+ (ti − 1)bi

a1

b1
(i = 2, . . . , N),

where b∞ = b1 +
∑N+2

j=2 tj bj .
Recall that both of G(1, . . . , 1, 2;N) and S(1, . . . , 1, 2;N) govern the holonomic

deformation of the system of linear differential equations

d�y
dx

= A(x, t)�y, A(x, t) = A1(t)

x2
+

N+2∑
j=2

Aj(t)

x − tj
, (2.10)

concerning the parameter t = (t1, . . . , tN ), see [3].

2.2. A family of τ -functions

Proposition 2.1 ([4]). For each solution of S(1, . . . , 1, 2;N), the 1-form

ω0 =
N∑

i=1

Hi dti , (2.11)

is closed. Here we let

H1 = − 1

t1
det AN+2 −

N+1∑
j=2

tr A1Aj − t1θj

t1tj
,

(2.12)

Hi = tr AiA1 − t1θi

t2
i

+
N+2∑

j=2,j �=i

tr AiAj − θiθj

ti − tj
(i = 2, . . . , N).

Proposition 2.1 allows us to define the τ -function τ0 = τ0(t) by

d log τ0 = ω0, (2.13)

up to multiplicative constants.
Let L2 be a subset of Z

N+2 defined as

L2 = {ν = (ν2, . . . , νN+3) ∈ Z
N+2||ν| = ν2 + · · · + νN+3 ∈ 2Z}. (2.14)
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Then S(1, . . . , 1, 2;N) is invariant under the action of the Schlesinger transformations
Tν (ν ∈ L2) which act on the parameters as follows (see [4]):

Tν(θj ) = θj + νj (j = 2, . . . , N + 3). (2.15)

We give explicitly the action of Tν on the dependent variables in the appendix A.
Let us define a family of τ -functions by

d log τν = Tν(ω0) (ν ∈ L2). (2.16)

Remark 2.2. A family of τ -functions for S(1, . . . , 1, 2;N) can be identified with that for
G(1, . . . , 1, 2;N) by

N∑
i=1

Ki dsi = T(0,...,0,1,0,−1)(ω0). (2.17)

Conversely, we can express a solution of S(1, . . . , 1, 2;N) in terms of τ -functions as
follows. By

T(0,...,0,2)(Hi) = Hi + Di log b∞ (i = 1, . . . , N), (2.18)

where Di = ∂/∂ti , we obtain

Proposition 2.3. A solution of S(1, . . . , 1, 2;N) is expressed by means of τ -functions as
follows:

a1 = t1

θN+3
(D1DN+3 log τ0 − ρ), b1 = t1D1

τ(0,...,0,2)

τ0
,

ai = 1

θN+3
(DiDN+3 log τ0 − θiρ), bi = Di

τ(0,...,0,2)

τ0
(i = 2, . . . , N),

aN+1 = 1

θN+3
{(DN+1 + 1)DN+3 log τ0 − ρ(ρ + θN+1 + θN+3)},

bN+1 = (DN+1 + θN+3 + 1)
τ(0,...,0,2)

τ0
, (2.19)

aN+2 = 1

θN+3
{(DN+2 − 1)DN+3 log τ0 − ρ(ρ + θN+2 + θN+3)},

bN+2 = (DN+2 − θN+3 − 1)
τ(0,...,0,2)

τ0
,

where

DN+1 = −
N∑

i=1

tiDi, DN+2 = t1D1 +
N∑

j=2

(tj − 1)Dj ,

(2.20)

DN+3 = −t1D1 +
N∑

i=2

ti(ti − 1)Di.

2.3. Coalescence structures

As is known in [2], the Garnier system G(1, . . . , 1;N) is equivalent to the Schlesinger system,
denoted by S(1, . . . , 1;N)

dAj =
N+2∑

i=1,i �=j

[Ai,Aj ] d log(tj − ti), (j = 1, . . . , N + 2), (2.21)
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with the following conditions:

(i) det Aj = 0, tr Aj = θj /∈ Z (j = 1, . . . , N + 2);
(ii) The matrices Aj satisfy

A∞ := −
N+2∑
j=1

Aj =
(

ρ 0
0 ρ + θN+3

)
, θN+3 /∈ Z. (2.22)

Let L1 be a subset of Z
N+3 defined as

L1 = {µ = (µ1, . . . , µN+3) ∈ Z
N+3||µ| = µ1 + · · · + µN+3 ∈ 2Z}. (2.23)

Then a family of τ -functions for S(1, . . . , 1;N) is defined by

d log τµ =
N∑

i=1

N+2∑
j=1,j �=i

1

ti − tj
Tµ(tr AiAj − θiθj ) dti (µ ∈ L1). (2.24)

Here we let Tµ be the Schlesinger transformations given in [17].
The system S(1, . . . , 1, 2;N) is obtained from S(1, . . . , 1;N) by the replacement

θ1 → 1/ε, θN+2 → θN+2 − 1/ε, t1 → εt1,

A1 → A1

εt1
, AN+2 → AN+2 − A1

εt1
,

(2.25)

and taking a limit ε → 0. Then (2.24) is also transformed into (2.16) via

τµ → τν (µ ∈ L1), (2.26)

where

ν = (µ2, . . . , µN+1, µ1 + µN+2, µN+3) ∈ L2. (2.27)

3. Classical transcendental solutions

In this section, a family of classical transcendental solutions is presented. This is reduced to
a family of rational solutions expressed in terms of the Schur polynomials.

We recall the definition of the Lauricella hypergeometric series FD . For each m =
(m1, . . . , mN), we let

tm = t
m1
1 · · · tmN

N , |m| = m1 + · · · + mN. (3.1)

The series FD is defined by

FD(α, β1, · · · , βN, γ ; t) =
∑

m∈(Z�0)N

(α)|m|(β1)m1 · · · (βN)mN

(γ )|m|(1)m1 . . . (1)mN

tm, (3.2)

where

(α)k = α(α + 1) · · · (α + k − 1). (3.3)

Via (2.25) and taking a limit ε → 0, FD is transformed into

�D(α, β2, . . . , βN, γ ; t) =
∑

m∈(Z�0)N

(α)|m|(β2)m2 · · · (βN)mN

(γ )|m|(1)m1 . . . (1)mN

tm. (3.4)

We note that the series (3.4) is a generalization of the hypergeometric series �1 given by
Horns ([1]).
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It is known that S(1, . . . , 1;N) admits a family of solutions expressed by FD . Let σ (1)
m,n

(m, n ∈ Z�0) be functions defined as follows:

σ
(1)
0,n = 1,

σ
(1)
1,n = (θN+2 − n)(θN+3 + n)t1(1 − t1)

−(θN+2+θN+3+1)

×FD(−θN+3 − n, θ1, . . . , θN ,−θN+1 − θN+3 − n + 1; t). (3.5)

and

σ (1)
m,n = det

(
Xi−1Y j−1σ

(1)
1,n

)
i,j=1,...,m

(m � 2), (3.6)

where

X = t1

t1 − 1

N∑
i=1

(ti − 1)Di, Y = 1

t1 − 1

N∑
i=1

ti(ti − 1)Di. (3.7)

Theorem 3.1 ([19]). Let

τ(0,...,0,m−n,m+n) = C(1)
m,nσ

(1)
m,n (m, n ∈ Z�0), (3.8)

where

C(1)
m,n = t

−m(m+1)/2
1 (1 − t1)

m(θN+2+θN+3+m)

m∏
k=1

1

(θN+2 − n)k
. (3.9)

When ρ = 0, this is a family of τ -functions for S(1, . . . , 1;N).

Via (2.25) and taking a limit ε → 0, each σ (1)
m,n is transformed into the function σ (2)

m,n

defined as follows:

σ
(2)
0,n = 1,

σ
(2)
1,n = (θN+3 + n)t1 e−t1�D(−θN+3 − n, θ2, . . . , θN ,−θN+1 − θN+3 − n + 1; t),

(3.10)

and

σ (2)
m,n = det

(
(t1D1)

i−1D
j−1
N+3σ

(2)
1,n

)
i,j=1,...,m

(m � 2). (3.11)

Thus we obtain the following theorem.

Theorem 3.2. Let

τ(0,...,0,m−n,m+n) = C(2)
m,nσ

(2)
m,n (m, n ∈ Z�0), (3.12)

where

C(2)
m,n = t

−m(m+1)/2
1 emt1 . (3.13)

When ρ = 0, this is a family of τ -functions for S(1, . . . , 1, 2;N).

Recall the definition of the Schur polynomials. For each partition λ = (λ1, . . . , λl), the
Schur polynomial is a polynomial in x = (x1, x2, . . .) defined by

Sλ(x) = det(pλi−i+j (x))i,j=1,...,l , (3.14)

where pn(x) are the polynomials defined as

pn(x) =
∑

k1+2k2+···+nkn=n

x
k1
1 x

k2
2 · · · xkn

n

k1!k2! · · · kn!
. (3.15)
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In a similar manner as [19], the τ -functions given by (3.12) are reduced to those expressed
in terms of the Schur polynomials.

Theorem 3.3. Let

τ(0,...,0,m−n,m+n) = S(nm)(x) (m, n ∈ Z�0), (3.16)

where we use the notation (nm) = (n, . . . , n) and let

x1 = t1 +
N+1∑
j=2

tj θj , xk = 1

k

N+1∑
j=2

t kj θj (k � 2). (3.17)

When ρ = θN+3 = 0, this is a family of τ -functions for S(1, . . . , 1, 2;N).

4. Algebraic solutions

In this section, we present a family of algebraic solutions expressed in terms of the universal
characters.

We recall the definition of the universal character introduced by Koike [9], which
is a generalization of the Schur polynomial. For each pair of partitions [λ,µ] =
[(λ1, . . . , λl), (µ1, . . . , µl′)], the universal character S[λ,µ](x, y) is defined as follows:

S[λ,µ](x, y) = det

(
pλl′−i+j +i−j (y), 1 � i � l′

pλ−l′+i−i+j (x), l′ + 1 � i � l + l′

)
1�i,j�l+l′

, (4.1)

where pn(x) is the polynomial defined by (3.15).
The system S(1, . . . , 1;N) admits a family of solutions expressed in terms of the universal

characters. Let

ξ 2
i = 1 − ti (i = 1, . . . , N). (4.2)

Theorem 4.1 ([18, 20]). Let

τ(0,...,0,m−n,0,m+n) = N(1)
m,nS[u!,v!](x, y) (m, n ∈ Z), (4.3)

where

xk = 1

k

(
θN+2 +

N∑
i=1

θiξ
k
i

)
, yk = 1

k

(
θN+2 +

N∑
i=1

θiξ
−k
i

)
, (4.4)

and

[u!, v!] = [(u, u − 1, . . . , 1), (v, v − 1, . . . , 1)],
(4.5)

u = |m + n − 1/2| − 1/2, v = |m − n + 1/2| − 1/2.

When θN+1 = 1/2 and θN+3 = −1/2, this is a family of τ -functions for S(1, . . . , 1;N).

Here we let

N(1)
m,n =

N∏
i=1

ξ
−θi (θi+2m−2n+1)/2
i

N∏
i=1

(
ξi + 1

2

)−θi θN+2 N∏
i,j=1,i<j

(
ξi + ξj

2

)−θiθj

. (4.6)

Via (2.25) and taking a limit ε → 0, we obtain from theorem 4.1 the following theorem.

Theorem 4.2. Let

τ(0,...,0,m−n,0,m+n) = N(2)
m,nS[u!,v!](x, y), (4.7)
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where

xk = 1

k

(
θN+2 − k

2
t1 +

N∑
i=2

θiξ
k
i

)
, yk = 1

k

(
θN+2 +

k

2
t1 +

N∑
i=2

θiξ
−k
i

)
. (4.8)

When θN+1 = 1/2 and θN+3 = −1/2, this is a family of τ -functions for S(1, . . . , 1, 2;N).

Here we let

N(2)
m,n = e�m,n

N∏
i=2

ξ
−θi (θi+2m−2n+1)/2
i

N∏
i=2

(
ξi + 1

2

)−θiθN+2 N∏
i,j=2,i<j

(
ξi + ξj

2

)−θi θj

, (4.9)

where

�m,n = t2
1

32
+

t1

4

(
2m − 2n + 1 + θN+2 +

N∑
i=2

2θi

1 + ξi

)
. (4.10)

Remark 4.3. When N = 1, this is already given in [13].
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Appendix. Schlesinger transformations

In this appendix, we describe the action of the Schlesinger transformations for
S(1, . . . , 1, 2;N) on the dependent variables.

The group of the Schlesinger transformations Tν (ν ∈ L2) is generated by the
transformations

T1 = T(0,...,0,1,1),

T2 = T(−1,0...,0,1),
(A.1)

T3 = T(0,−1,0,...,0,1),

...

TN+2 = T(0,...,0,−1,1).

The action of Tk (k = 1, . . . , N + 2) on the dependent variables is described as follows:

T1(A1) = R
(1)
2 A1E2 + E1A1R

(1)
1 − R

(1)
2 AN+2R

(1)
1 ,

T1(AN+2) = R
(1)
2 AN+2E2 + E1AN+2R

(1)
1 − E1A1E2 + E1R

(1)
1 +

N+1∑
i=2

1

ti
R

(1)
2 AiR

(1)
1 , (A.2)

T1(Aj ) = R
(1)
2 AjE2 + E1AjR

(1)
1 − tjE1AjE2 − 1

tj
R

(1)
2 AjR

(1)
1 (j = 2, . . . , N + 1),

where

R
(1)
1 = 1

(θN+3 + 1)b1

(
b1

d1

) (
θN+3 + 1 b∞

)
,

(A.3)

R
(1)
2 = 1

(θN+3 + 1)b1

( −b∞
θN+3 + 1

) (−d1 b1
)
,
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for k = 1;

Tk(A1) = E1A1R
(k)
1 + R

(k)
2 A1E2 + tkE1A1E2 +

1

tk
R

(k)
2 A1R

(k)
1 ,

Tk(AN+2) = E1AN+2R
(k)
1 + R

(k)
2 AN+2E2 + tkE1AN+2E2 − E1A1E2

+
1

tk
R

(k)
2 AN+2R

(k)
1 +

1

t2
k

R
(k)
2 A1R

(k)
1 ,

Tk(Ak) = E1AkR
(k)
1 + R

(k)
2 AkE2 − R

(k)
2 E2 − 1

t2
k

R
(k)
2 A1R

(k)
1 −

N+2∑
i=2,i �=k

1

tk − ti
R

(k)
2 AiR

(k)
1 ,

Tk(Aj ) = E1AjR
(k)
1 + R

(k)
2 AjE2 + (tk − tj )E1AjE2

+
1

tk − tj
R

(k)
2 AjR

(k)
1 (j �= 1, k,N + 2), (A.4)

where

R
(k)
1 = 1

(θN+3 + 1)bk

(
bk

−ak

) (
θN+3 + 1 b∞

)
,

R
(k)
2 = 1

(θN+3 + 1)bk

( −b∞
θN+3 + 1

)
(bk ak),

(A.5)

for k = 2, . . . , N + 1;

T1(A1) = E1A1R
(N+2)
1 + R

(N+2)
2 A1E2 − R

(N+2)
2 AN+2R

(N+2)
1 ,

T1(AN+2) = E1AN+2R
(N+2)
1 + R

(N+2)
2 AN+2E2 − E1A1E2 − R

(N+2)
2 E2

+
N+1∑
i=2

1

ti
R

(N+2)
2 AiR

(N+2)
1 ,

T1(Aj ) = E1AjR
(N+2)
1 + R

(N+2)
2 AjE2 − tjE1AjE2

− 1

tj
R

(N+2)
2 AjR

(N+2)
1 (j = 2, . . . , N + 1), (A.6)

where

R
(N+2)
1 = 1

(θN+3 + 1)b1

(
b1

−a1

)
(θN+3 + 1 b∞),

R
(N+2)
2 = 1

(θN+3 + 1)b1

( −b∞
θN+3 + 1

)
(b1 a1),

(A.7)

for k = N + 2.
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equation Nagoya Math. J. 168 1–25

[14] Okamoto K 1986 Isomonodromic deformation and Painlevé equations, and the Garnier system J. Fac. Sci. Univ.
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